

## LA-UR-19-30254

Approved for public release; distribution is unlimited.

Title: EURATOM Fast Collar for BWR (EFCB) Field Calibration Exercise

Author(s): Swinhoe, Martyn Thomas

Tomanin, Alice Rael, Carlos D. Favalli, Andrea Lodi, D

Intended for: Report

Issued: 2019-10-09



#### EURATOM Fast Collar for BWR (EFCB) Field Calibration Exercise

C. D. Rael, A. Favalli, M. T. Swinhoe,

Los Alamos National Laboratory

A. Tomanin and D. Lodi

European Commission, Directorate General Energy,

Directorate Euratom Safeguards, Luxembourg

#### Introduction

A neutron collar for the measurement of fresh BWR fuel assemblies (EFCB) has been designed and built by Los Alamos National Laboratory (LANL) and the Euratom Safeguards Directorate (Euratom). The design was similar to a previous collar designed for the measurement of fresh PWR assemblies [1]. A key feature of both of these collars is that they operate in fast mode (preventing the return of thermal neutrons into the assembly by means of a cadmium liner) to reduce the effect of burnable poisons on the measurement.

The first EFCB was fabricated in Europe and sent to Los Alamos in December 2018, where a calibration exercise was carried out jointly by Los Alamos and Euratom Safeguards staff [2].

The calibration data obtained in Los Alamos were fit with the standard curve of the form

$$y=am/(1+bm)$$

where y is the net doubles count rate, m is  $^{235}$ U loading in g/cm in the assembly, and a and b are the calibration constants determined by the curve fit. Using the Deming plotting program [3], we determined calibration constants of

$$a = 1.26 + -0.068$$

$$b = 0.00344 + -0.00448$$
.

This calibration covered a limited range of mass loading, up to 16 g <sup>235</sup>U/cm. The "b" parameter is within 1 sigma of zero, indicating the linearity of the calibration. As commercial fuel assemblies have significantly greater <sup>235</sup>U linear mass loadings than the LANL assembly, a field exercise in a fuel fabrication plant was carried out to extend the range of this calibration, as was also done in the case for the PWR version of the collar [4]. The current report describes the results of the field calibration exercise that was carried out at the ENUSA Fuel Fabrication Plant in Juzbado, Spain from May 28 to May 31, 2019.

#### Measurements

All the data were collected and analyzed using INCC [5] using the method described in the collar "bible" [6]. The measurements were made with the C121 AmLi source provided by Euratom. The counting rate from this source in the empty collar was  $3008.9 \pm 0.77$  cps (after background subtraction). In December 2018 the counting rate from the MRC-95 AmLi source was  $1848.0 \pm 2.8$  cps. This makes the source strength of C121 relative to MRC-95 equal to  $1.6282 \pm 0.0015$ . The decay of MRC-95 between December

2018 and May 2019 is negligible and was neglected. All LANL collars are related to MRC-95 in order to put all calibrations on an absolute basis (independent of the AmLi source actually used).

The properties of interest for the fuel assemblies that were available are shown in Table 1. Each fuel assembly has 3 vertical zones (high, middle and low) and separate measurements were made on each zone.

Table 1 Nuclear Material Parameters of Fuel Assemblies

|         |         | High<br>( <sup>235</sup> U | Middle<br>( <sup>235</sup> U | Low<br>( <sup>235</sup> U | High<br>( <sup>238</sup> U | Middle<br>( <sup>238</sup> U | Low<br>( <sup>238</sup> U |
|---------|---------|----------------------------|------------------------------|---------------------------|----------------------------|------------------------------|---------------------------|
| Fuel ID | Type ID | g/cm)                      | g/cm)                        | g/cm)                     | g/cm)                      | g/cm)                        | g/cm)                     |
| 1       | Α       | 20.088                     | 22.364                       | 24.070                    | 421.02                     | 464.73                       | 497.51                    |
| 2       | Α       | 20.086                     | 22.361                       | 24.067                    | 421.05                     | 464.76                       | 497.55                    |
| 3       | Α       | 20.081                     | 22.355                       | 24.061                    | 420.98                     | 464.69                       | 497.47                    |
| 4       | Α       | 20.065                     | 22.338                       | 24.043                    | 420.82                     | 464.51                       | 497.28                    |
| 5       | В       | 20.121                     | 22.393                       | 24.053                    | 421.87                     | 465.52                       | 497.42                    |
| 6       | В       | 20.139                     | 22.413                       | 24.075                    | 422.24                     | 465.93                       | 497.85                    |
| 7       | В       | 20.147                     | 22.422                       | 24.084                    | 422.21                     | 465.89                       | 497.81                    |
| 8       | В       | 20.093                     | 22.362                       | 24.019                    | 422.11                     | 465.79                       | 497.70                    |
| 9       | В       | 20.116                     | 22.387                       | 24.047                    | 421.90                     | 465.56                       | 497.45                    |
| 10      | В       | 20.113                     | 22.385                       | 24.044                    | 421.85                     | 465.50                       | 497.40                    |
| 11      | В       | 20.129                     | 22.402                       | 24.062                    | 422.12                     | 465.80                       | 497.72                    |
| 12      | В       | 20.137                     | 22.410                       | 24.072                    | 422.44                     | 466.15                       | 498.09                    |
| 13      | В       | 20.113                     | 22.385                       | 24.044                    | 422.03                     | 465.70                       | 497.60                    |
| 14      | В       | 20.100                     | 22.370                       | 24.029                    | 421.76                     | 465.40                       | 497.29                    |

The details of the burnable poison pin content is given in Table 2 Burnable Poison Information

Table 2 Burnable Poison Information

| Assembly type | Total | Poison | Gd <sub>2</sub> O <sub>3</sub> Poison |
|---------------|-------|--------|---------------------------------------|
| /position     | pins  | pins   | %                                     |
| A low         | 92    | 14     | 7                                     |
| A middle      | 86    | 14     | 7                                     |
| A high        | 78    | 14     | 7                                     |
| B low         | 92    | 15     | 6                                     |
| B middle      | 86    | 13     | 6                                     |
| B high        | 78    | 13     | 6                                     |

Table 3 shows the counting rates obtained from each of the measurements. Most measurement were for a total time of one hour to have good statistics for the calibration. Two measurements were made with shorter times to see how the uncertainty was affected.

Table 3 Measurement Results from Fuel Assemblies

|          |          |         |           |          | Total |
|----------|----------|---------|-----------|----------|-------|
|          |          |         |           |          | Meas  |
|          |          |         | Corrected |          | time  |
| Date     | Time     | Item ID | Doubles   | Dbls Err | (min) |
| 05/29/19 | 13:47:23 | 1 Low   | 27.36     | 0.66     | 21    |
| 05/29/19 | 14:14:19 | 1 Low   | 27.71     | 0.44     | 47    |
| 05/29/19 | 16:42:40 | 1 Low   | 26.66     | 0.38     | 60    |
| 05/30/19 | 10:47:39 | 3 Low   | 27.39     | 0.40     | 60    |
| 05/30/19 | 13:11:12 | 3 Mid   | 25.46     | 0.40     | 60    |
| 05/30/19 | 13:31:25 | 3 High  | 22.74     | 0.41     | 60    |
| 05/30/19 | 16:31:41 | 9 Low   | 27.61     | 0.41     | 60    |
| 05/30/19 | 17:59:51 | 9 Mid   | 25.39     | 0.41     | 60    |
| 05/30/19 | 18:15:03 | 9 High  | 23.82     | 0.42     | 60    |
| 05/31/19 | 09:04:16 | 6 Low   | 27.06     | 0.41     | 60    |
| 05/31/19 | 11:19:05 | 6 Mid   | 25.61     | 0.41     | 60    |
| 05/31/19 | 11:33:31 | 6 High  | 23.28     | 0.41     | 60    |
| 05/31/19 | 13:15:49 | 4 Low   | 26.12     | 0.41     | 60    |
| 05/31/19 | 15:45:26 | 4 Mid   | 26.02     | 0.41     | 60    |
| 05/31/19 | 16:00:17 | 4 High  | 22.99     | 0.42     | 60    |

## **Analysis**

Initial examination of the data showed that the shape of the Juzbado data was being adversely affected by the heavy metal correction. Reference [6] suggests that the heavy metal correction for BWR fuel should be around 1-2%. With the default values the heavy metal correction was over 3%. Therefore the data was analyzed with a very much reduced heavy metal correction (b=1e-4 rather than 7.24e-4), which reduced the magnitude of the correction and gave the expected behavior. The results are shown in Figure 3. (The effect of the change of this factor should continue to be evaluated as further data is collected.) This change makes no difference to the results of the original LANL measurements because the reference heavy metal loading was set to the LANL assembly value.

This new field calibration data together with the original Los Alamos data were fit with the standard curve in the same form as above. We obtained the calibration constants and variances and covariances given in Table 4 and the results are plotted in Figure 1.

Table 4 Calibration parameters obtained from a Deming fit to all data

| a      | b             |
|--------|---------------|
| 1.2979 | 6.209075E-003 |
| σа     | σb            |

| 2.790349E-002 | 1.151896E-003 |
|---------------|---------------|
| Var a         |               |
| 7.786050E-004 |               |
| Covar ab      | Var b         |
| 3.151214E-005 | 1.326864E-006 |

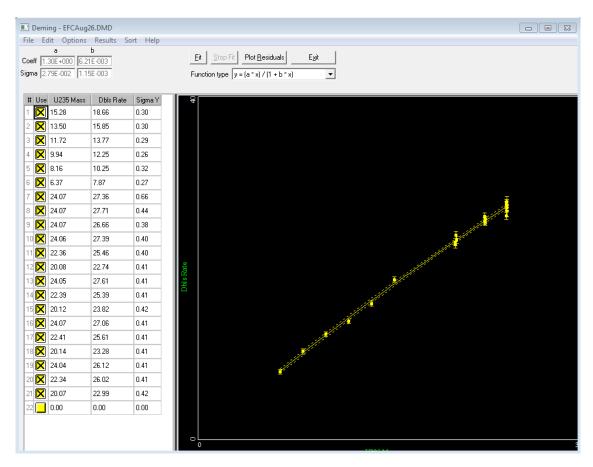



Figure 1 Deming Fit to All Data Points

The new 'a" parameter is about 3% larger than the value determined from the Los Alamos data alone, but this is compensated to a large extent by the "b" parameter, which is now definitely positive, as the higher mass loadings show more curvature than at lower mass loadings. Figure 2 shows a comparison of the original and new calibrations. The overall change is very small in the region of the original LANL data.

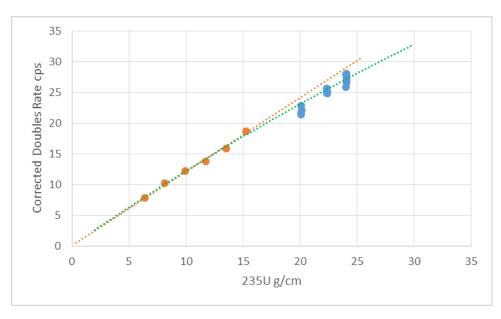



Figure 2 Comparison of initial calibration and new calibration. LANL points and initial calibration are shown in orange, Juzbado data in blue and fit to all data in dotted green.

The  $^{235}\text{U}$  mass results calculated using the new calibration are shown in Table 5 and plotted in Figure 3.

Table 5 Measurement Results with Updated Calibration

|           |          |         | Declared     | Measured     | Mass                | Mass             | Declared       | Declared    | Difference        |
|-----------|----------|---------|--------------|--------------|---------------------|------------------|----------------|-------------|-------------------|
| Date      | Time     | Item ID | Mass<br>g/cm | Mass<br>g/cm | Uncertainty<br>g/cm | Uncertainty<br>% | -Assay<br>g/cm | -Assay<br>% | (Number of sigma) |
| 5/29/2019 | 13:47:23 | 1 Low   | 24.07        | 24.26        | 0.69                | 2.83             | -0.19          | -0.77       | -0.27             |
| 5/29/2019 | 14:14:19 | 1 Low   | 24.07        | 24.62        | 0.47                | 1.92             | -0.55          | -2.27       | -1.18             |
| 5/29/2019 | 16:42:40 | 1 Low   | 24.07        | 23.54        | 0.41                | 1.75             | 0.53           | 2.20        | 1.26              |
| 5/30/2019 | 10:47:39 | 3 Low   | 24.06        | 24.28        | 0.44                | 1.80             | -0.22          | -0.93       | -0.52             |
| 5/30/2019 | 13:11:12 | 3 Mid   | 22.36        | 22.33        | 0.42                | 1.88             | 0.02           | 0.10        | 0.05              |
| 5/30/2019 | 13:31:25 | 3 High  | 20.08        | 19.66        | 0.41                | 2.07             | 0.42           | 2.10        | 1.01              |
| 5/30/2019 | 16:31:41 | 9 Low   | 24.05        | 24.51        | 0.45                | 1.82             | -0.46          | -1.92       | -1.05             |
| 5/30/2019 | 17:59:51 | 9 Mid   | 22.39        | 22.26        | 0.42                | 1.90             | 0.12           | 0.55        | 0.29              |
| 5/30/2019 | 18:15:03 | 9 High  | 20.12        | 20.71        | 0.42                | 2.04             | -0.60          | -2.98       | -1.46             |
| 5/31/2019 | 09:04:16 | 6 Low   | 24.08        | 23.95        | 0.44                | 1.83             | 0.12           | 0.51        | 0.28              |
| 5/31/2019 | 11:19:05 | 6 Mid   | 22.41        | 22.49        | 0.42                | 1.89             | -0.08          | -0.34       | -0.18             |
| 5/31/2019 | 11:33:31 | 6 High  | 20.14        | 20.19        | 0.41                | 2.04             | -0.05          | -0.23       | -0.11             |
| 5/31/2019 | 13:15:49 | 4 Low   | 24.04        | 23.00        | 0.43                | 1.86             | 1.05           | 4.35        | 2.34              |
| 5/31/2019 | 15:45:26 | 4 Mid   | 22.34        | 22.90        | 0.43                | 1.87             | -0.56          | -2.50       | -1.34             |
| 5/31/2019 | 16:00:17 | 4 High  | 20.07        | 19.90        | 0.42                | 2.09             | 0.16           | 0.81        | 0.39              |

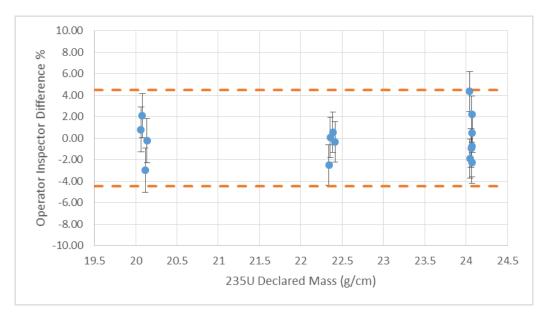



Figure 3 Declared-Measured as a function of <sup>235</sup>U mass. The dotted lines correspond to the 2010 ITV values for "LWR fresh fuel without Gd or with a Gd content, not exceeding the calibration range"

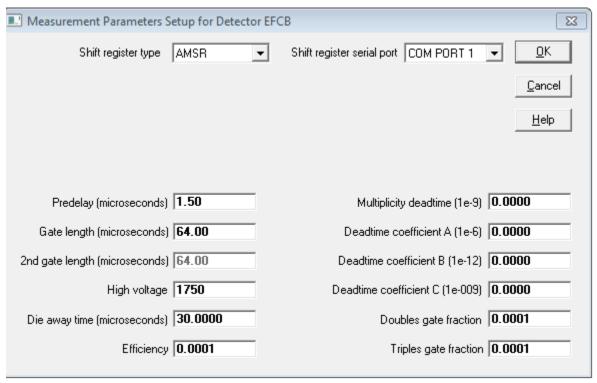
The results are good, well within 3 sigma of the declarations and within the 2010 ITV values for UNCL measurements ( $\pm 4.5\%$  as shown on the figure).

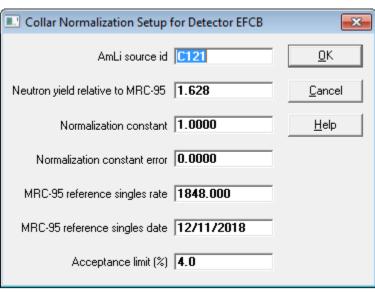
The uncertainty on the <sup>235</sup>U mass loading calculated by INCC for the measurement of assembly 1-Low is 2.8% for 21 minutes total measurement time, 1.9% for the 47 minute measurement and 1.8% for the 1 hour measurement. The operator-inspector differences for these shorter measurements are not very different from the 1 hour measurements. This suggests that 47 minute or even 20 minute measurements could give acceptable results, within the 2010 ITV values, for inspection purposes.

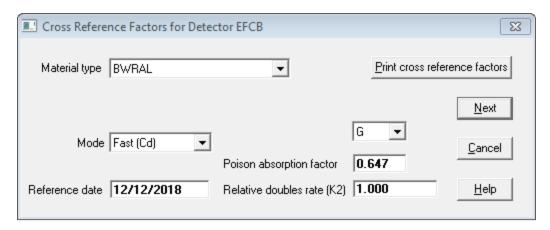
## Conclusion

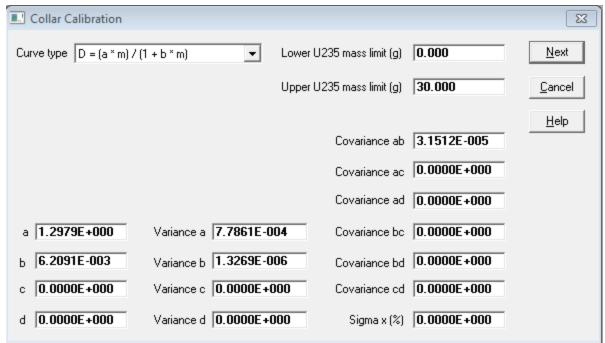
This report gives the results of the EFCB field exercise in the ENUSA plant in Juzbado Spain. The intensity of AmLi source C121 relative to MRC-95 was determined. The heavy metal loading correction was modified based on these results to reduce the correction required for the BWR with Cd case. A new calibration curve was produced, which extends the mass range beyond that of the calibration in Los Alamos in 2018. All of the parameters necessary for inspection measurements using INCC have been established.

## Acknowledgements

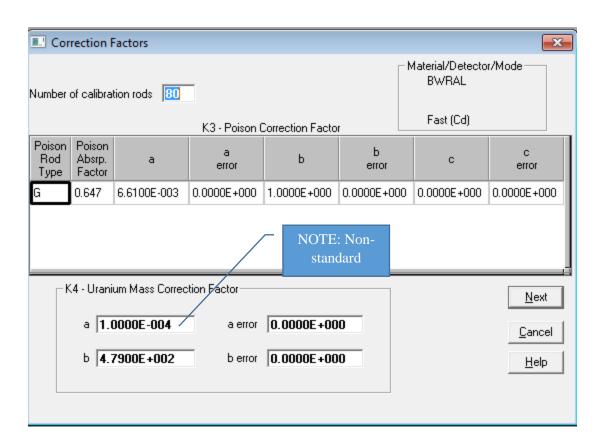

This work was carried out as a joint action sheet under the cooperation agreement between the United States Department of Energy and the European Atomic Energy Community represented by the Commission of European Communities.

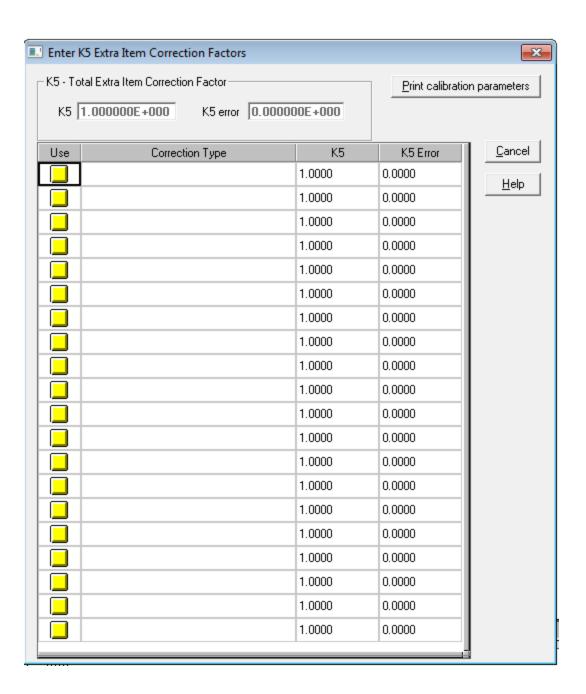

The authors would also like to thank the staff of the Juzbado Plant, in particular Oscar Zurron Cifuentes, Susana Perez Minambres and Andres Sanchez for their help in carrying out these measurements.


#### References


- 1. M. T. Swinhoe, H. O. Menlove, C. D. Rael and P. De Baere "Fresh PWR Assembly Measurements with a New Fast Neutron Collar" IAEA Symposium Vienna, Austria, October 2014.
- 2. A. Favalli, M. T. Swinhoe, P. De Baere, and M. Root "Action Sheet 55 Measurement Campaign Summary" December 2018 private communication
- 3. W. Harker, M. Krick and P. Rinard "Deming Least Squares Fitting Program" Version 2, September 2002. Los Alamos National Laboratory
- 4. M. T. Swinhoe, C. D. Rael, H.O. Menlove and P. De Baere "Euratom Fast Collar (EFC) Calibration Report" Los Alamos National Laboratory Report La-UR-14-23275 May 2014
- 5. M. Krick, W. Harker, J. Longo and W. Geist "INCC Software Users Manual" Los Alamos National Laboratory Report LA-UR-10-6227 March 2009.
- 6. H.O. Menlove, J. E. Stewart, S. Z. Qiao, T. R. Wenz and G.P.D. Verrecchia, "Neutron Collar Calibration and Evaluation for Assay of LWR Fuel Assemblies Containing Burnable Neutron Absorbers", Los Alamos National Laboratory Report LA-11965-MS November 1990.

## APPENDIX A INCC Setup for EFCB with C-121








Calibration curve fitting Juzbado and LANL data





## APPENDIX B Example INCC Output

### INCC 5.1.2

Facility: WSAF
Material balance area: WSAF
Detector type: EFC
Detector id: EFCB
Electronics id: AMSR

Inventory change code:

I/O code:

Measurement date: 19.05.31 16:13:34 Results file name: 95VQ1334.VER

Inspection number: ETI w21
Item id: Assembly#4 High

Stratum id: AUG19
Bias uncertainty: 0.0000
Random uncertainty: 0.0000
Systematic uncertainty: 0.0000
Relative std deviation: 0.0000
Material type: BWRAL
Original declared mass: 20.065
Measurement option: Verification

Data source: Database

QC tests: On

Error calculation: Sample method Accidentals method: Measured Inspector name: AT-DL-CR

Comment:

Isotopics id: Default Isotopics source code: OD

 Pu238:
 0.0000 + 0.0000
 0.0000 + 0.0000

 Pu239:
 0.0000 + 0.0000
 0.0000 + 0.0000

 Pu240:
 100.0000 + 0.0000
 100.0000 + 0.0000

 Pu241:
 0.0000 + 0.0000
 0.0000 + 0.0000

 Pu242:
 0.0000 + 0.0000
 0.0000 + 0.0000

Pu date: 00.01.01 19.05.31

 $Am241: \quad 0.0000 +- \quad 0.0000 \quad \quad 0.0000 +- \quad 0.0000$ 

Am date: 00.01.01 19.05.31

Predelay: 1.50
Gate length: 64.00
2nd gate length: 64.00
High voltage: 1750
Die away time: 30.0000
Efficiency: 0.0001
Multiplicity deadtime: 0.0000

Coefficient A deadtime: 0.0000
Coefficient B deadtime: 0.0000
Coefficient C deadtime: 0.0000

Doubles gate fraction: 0.0001 Triples gate fraction: 0.0001

Passive scaler1 bkgrnd: 0.000 Passive scaler2 bkgrnd: 0.000

Active singles bkgrnd: 19.887 +- 0.245 Active doubles bkgrnd: 0.017 +- 0.007 Active triples bkgrnd: -0.000 +- 0.000

Active scaler1 bkgrnd: 0.000 Active scaler2 bkgrnd: 0.000

Number passive cycles: 20 Count time (sec): 30

Number active cycles: 100 Count time (sec): 30

### Active messages

Collar: failed stratum rejection limits

#### Passive results

Singles: 64.150 +-0.341 Doubles: 7.003 + -0.180 Triples: 1.114 +-0.134 Quads: 0.413 + -0.123 Quads/Triples: 0.257 + -0.053 Scaler 1: 0.000 + -0.000 Scaler 2: -+000.00.000

#### Active results

Singles: 2670.074 +-0.971 Doubles: 41.064 +-0.573 Triples: 4.783 +-0.224 Quads: 0.760 + -0.139 Quads/Triples: 0.122 + -0.029 Scaler 1: 0.000 + -0.000 Scaler 2: 0.000 + -0.000

#### Collar results

AmLi source id: C121 Mode: Fast (Cd)

Declared U235 mass (g): 20.065 +- 0.0000 Declared U238 mass (g): 420.823 +- 0.0000

1.000 + -0.0000Declared length: Declared total rods: 78 Declared total poison rods: 14 Declared poison rod type: G Declared poison %: 7.000 + -0.0000 k0 (source yield factor): 0.615 + -0.0026 k1 (stability factor): 1.000 + -0.0000 k2 (detector response factor): 1.000 + -0.0030 k3 (poison factor): 1.094 + -0.0000 k4 (uranium factor): 1.004 +-0.0000 k5 (other correction factor): 1.000 + -0.0000 K (total correction factor): 0.675 + -0.0020 Corrected net doubles: 22.990 +-0.4161 U235 mass (g): 19.902 +-0.4160 Declared - assay U235 mass (g): 0.163 + - 0.4160Declared - assay U235 mass (%): 0.811 + -2.0731

## Collar calibration parameters

Equation: D = (a \* m) / (1 + b \* m)a: 1.297900e+000 b: 6.209100e-003 c: 0.000000e+000 d: 0.000000e+000 variance a: 7.786100e-004 variance b: 1.326900e-006 variance c: 0.000000e+000 variance d: 0.000000e+000 covariance ab: 3.151200e-005 covariance ac: 0.000000e+000 covariance ad: 0.000000e+000 covariance bc: 0.000000e+000 covariance bd: 0.000000e+000 covariance cd: 0.000000e+000 sigma x: 0.000000e+000 number of calibration rods: 80 poison rod type: G poison absorption factor: 0.647 poison correction factor a: 6.610000e-003 poison correction factor a error: 0.000000e+000 poison correction factor b: 1.000000e+000 poison correction factor b error: 0.000000e+000 poison correction factor c: 0.000000e+000 poison correction factor c error: 0.000000e+000 U mass correction factor a: 1.000000e-004 U mass correction factor a error: 0.000000e+000 U mass correction factor b: 4.790000e+002 U mass correction factor b error: 0.000000e+000 item correction factor: 1.000000e+000 item correction factor error: 0.000000e+000 reference date: 18.12.12

relative doubles rate: 1.000000e+000

K5 item correction factors

## Passive cycle rate data

| Cycle | Singles | Doubles | Triples | Mass QC Tests           |
|-------|---------|---------|---------|-------------------------|
| 1     | 65.565  | 6.917   | 0.676   | 0.000 Pass              |
| 2     | 66.698  | 6.783   | 0.671   | 0.000 Pass              |
| 3     | 62.998  | 7.650   | 1.966   | 0.000 Pass              |
| 4     | 62.598  | 6.217   | 0.678   | 0.000 Pass              |
| 5     | 64.665  | 6.483   | 0.627   | 0.000 Pass              |
| 6     | 64.598  | 7.083   | 1.266   | 0.000 Pass              |
| 7     | 64.565  | 6.617   | 0.629   | 0.000 Pass              |
| 8     | 64.532  | 13.617  | 46.345  | 0.000 Fail outlier test |
| 9     | 65.465  | 6.117   | 0.461   | 0.000 Pass              |
| 10    | 64.498  | 6.317   | 0.670   | 0.000 Pass              |
| 11    | 64.698  | 6.750   | 0.822   | 0.000 Pass              |
| 12    | 62.432  | 7.083   | 2.178   | 0.000 Pass              |
| 13    | 62.365  | 7.517   | 1.390   | 0.000 Pass              |
| 14    | 65.332  | 7.483   | 0.665   | 0.000 Pass              |
| 15    | 64.665  | 6.583   | 1.210   | 0.000 Pass              |
| 16    | 60.965  | 6.817   | 1.284   | 0.000 Pass              |
| 17    | 63.798  | 5.850   | 0.392   | 0.000 Pass              |
| 18    | 63.198  | 6.550   | 1.496   | 0.000 Pass              |
| 19    | 65.365  | 7.783   | 1.140   | 0.000 Pass              |
| 20    | 63.165  | 8.183   | 1.541   | 0.000 Pass              |
| 21    | 65.365  | 9.283   | 2.519   | 0.000 Pass              |
|       |         |         |         |                         |

# Active cycle rate data

| Cycle | Singles  | Doubles | Triples | Mass QC Tests           |
|-------|----------|---------|---------|-------------------------|
| 1     | 2672.513 | 61.317  | 4.153   | 0.000 Fail outlier test |
| 2     | 2663.013 | 38.150  | 4.754   | 0.000 Pass              |
| 3     | 2660.680 | 47.883  | 6.086   | 0.000 Pass              |
| 4     | 2651.113 | 44.117  | 1.993   | 0.000 Pass              |
| 5     | 2663.880 | 37.617  | 2.846   | 0.000 Pass              |
| 6     | 2676.980 | 37.383  | 4.920   | 0.000 Pass              |
| 7     | 2663.613 | 48.217  | 4.689   | 0.000 Pass              |
| 8     | 2670.113 | 46.150  | 3.630   | 0.000 Pass              |
| 9     | 2669.513 | 43.783  | 5.660   | 0.000 Pass              |
| 10    | 2667.147 | 44.583  | 3.835   | 0.000 Pass              |
| 11    | 2663.280 | 25.283  | 1.221   | 0.000 Pass              |
| 12    | 2648.580 | 48.650  | 57.024  | 0.000 Fail outlier test |
| 13    | 2669.847 | 41.050  | 6.179   | 0.000 Pass              |
| 14    | 2679.780 | 46.950  | 6.914   | 0.000 Pass              |
| 15    | 2676.847 | 27.883  | 4.318   | 0.000 Pass              |
| 16    | 2664.613 | 43.350  | 3.902   | 0.000 Pass              |
| 17    | 2660.447 | 35.617  | 0.994   | 0.000 Pass              |
| 18    | 2679.747 | 32.917  | 7.618   | 0.000 Pass              |
| 19    | 2668.113 | 45.083  | 4.413   | 0.000 Pass              |
| 20    | 2674.880 | 43.883  | 0.568   | 0.000 Pass              |

| 21       | 2650 412 | 10 150 | 0.600  | 0.000 D    |
|----------|----------|--------|--------|------------|
| 21<br>22 | 2658.413 | 48.450 | -0.609 | 0.000 Pass |
|          | 2681.313 | 42.383 | 5.442  | 0.000 Pass |
| 23       | 2667.713 | 50.483 | 1.638  | 0.000 Pass |
| 24       | 2676.547 | 39.083 | 3.722  | 0.000 Pass |
| 25       | 2656.147 | 38.883 | 4.009  | 0.000 Pass |
| 26       | 2677.113 | 47.717 | 6.241  | 0.000 Pass |
| 27       | 2673.713 | 35.017 | 4.675  | 0.000 Pass |
| 28       | 2666.147 | 34.150 | 4.158  | 0.000 Pass |
| 29       | 2665.713 | 43.750 | 4.495  | 0.000 Pass |
| 30       | 2671.613 | 34.817 | 4.401  | 0.000 Pass |
| 31       | 2657.147 | 36.717 | 6.349  | 0.000 Pass |
| 32       | 2671.013 | 36.183 | 3.709  | 0.000 Pass |
| 33       | 2668.280 | 37.750 | 5.004  | 0.000 Pass |
| 34       | 2701.713 | 42.417 | 4.928  | 0.000 Pass |
| 35       | 2681.380 | 32.050 | 5.808  | 0.000 Pass |
| 36       | 2659.480 | 36.917 | 6.792  | 0.000 Pass |
| 37       | 2671.780 | 40.317 | 0.812  | 0.000 Pass |
| 38       | 2671.247 | 34.317 | 5.701  | 0.000 Pass |
| 39       | 2674.947 | 37.117 | 9.108  | 0.000 Pass |
| 40       | 2666.647 | 47.583 | 6.535  | 0.000 Pass |
| 41       | 2660.713 | 35.517 | 5.352  | 0.000 Pass |
| 42       | 2660.180 | 45.183 | 7.078  | 0.000 Pass |
| 43       | 2673.047 | 34.717 | 5.656  | 0.000 Pass |
| 44       | 2676.213 | 37.650 | 1.770  | 0.000 Pass |
| 45       | 2655.947 | 37.150 | 2.988  | 0.000 Pass |
| 46       | 2673.913 | 49.183 | 2.532  | 0.000 Pass |
| 47       | 2675.080 | 47.850 | 5.751  | 0.000 Pass |
| 48       | 2667.247 | 38.550 | 4.549  | 0.000 Pass |
| 49       | 2665.180 | 37.083 | 4.722  | 0.000 Pass |
| 50       | 2686.047 | 49.983 | 7.833  | 0.000 Pass |
| 51       | 2672.513 | 32.350 | 2.023  | 0.000 Pass |
| 52       | 2652.713 | 39.950 | 5.152  | 0.000 Pass |
| 53       | 2676.847 | 41.483 | 4.504  | 0.000 Pass |
| 54       | 2659.480 | 47.117 | 5.055  | 0.000 Pass |
| 55       | 2658.347 | 35.717 | 2.524  | 0.000 Pass |
| 56       | 2679.780 | 33.483 | 0.461  | 0.000 Pass |
| 57       | 2687.847 | 42.483 | 5.775  |            |
| 58       | 2686.213 | 45.883 | 0.652  |            |
|          |          |        |        | 0.000 Pass |
| 59       | 2669.913 | 46.783 | 3.540  | 0.000 Pass |
| 60       | 2678.013 | 39.450 | 3.673  | 0.000 Pass |
| 61       | 2678.647 | 47.950 | 6.935  | 0.000 Pass |
| 62       | 2672.847 | 54.617 | 7.688  | 0.000 Pass |
| 63       | 2672.313 | 44.750 | 2.739  | 0.000 Pass |
| 64       | 2672.913 | 34.050 | 8.014  | 0.000 Pass |
| 65       | 2673.813 | 39.583 | 6.652  | 0.000 Pass |
| 66       | 2674.847 | 37.150 | 2.958  | 0.000 Pass |
| 67       | 2669.747 | 40.417 | 8.789  | 0.000 Pass |
| 68       | 2661.680 | 35.250 | 1.587  | 0.000 Pass |
| 69       | 2685.713 | 42.750 | 4.888  | 0.000 Pass |
| 70       | 2669.747 | 37.617 | 4.503  | 0.000 Pass |
| 71       | 2683.847 | 42.417 | 6.672  | 0.000 Pass |
|          |          |        |        |            |

| 72  | 2653.380 | 43.650 | 2.640  | 0.000 Pass |
|-----|----------|--------|--------|------------|
| 73  | 2676.080 | 37.017 | 3.375  | 0.000 Pass |
| 74  | 2664.780 | 46.217 | 7.170  | 0.000 Pass |
| 75  | 2653.580 | 37.217 | 5.407  | 0.000 Pass |
| 76  | 2650.447 | 45.783 | 7.376  | 0.000 Pass |
| 77  | 2660.013 | 38.117 | 3.021  | 0.000 Pass |
| 78  | 2667.080 | 43.117 | 6.991  | 0.000 Pass |
| 79  | 2662.680 | 35.750 | 4.541  | 0.000 Pass |
| 80  | 2652.580 | 47.850 | 4.226  | 0.000 Pass |
| 81  | 2670.513 | 48.717 | 2.996  | 0.000 Pass |
| 82  | 2665.847 | 31.750 | 4.212  | 0.000 Pass |
| 83  | 2678.280 | 39.683 | 5.220  | 0.000 Pass |
| 84  | 2695.480 | 51.017 | 9.316  | 0.000 Pass |
| 85  | 2679.580 | 53.083 | 10.808 | 0.000 Pass |
| 86  | 2686.547 | 43.583 | 2.450  | 0.000 Pass |
| 87  | 2658.147 | 47.550 | 6.755  | 0.000 Pass |
| 88  | 2675.180 | 40.717 | 7.310  | 0.000 Pass |
| 89  | 2666.780 | 45.617 | 4.521  | 0.000 Pass |
| 90  | 2670.280 | 44.450 | 9.506  | 0.000 Pass |
| 91  | 2669.047 | 43.983 | 4.557  | 0.000 Pass |
| 92  | 2678.247 | 45.050 | 8.508  | 0.000 Pass |
| 93  | 2658.913 | 36.517 | 4.172  | 0.000 Pass |
| 94  | 2666.447 | 44.250 | 6.097  | 0.000 Pass |
| 95  | 2674.913 | 39.117 | 9.970  | 0.000 Pass |
| 96  | 2686.413 | 35.917 | 4.693  | 0.000 Pass |
| 97  | 2670.347 | 44.917 | 3.937  | 0.000 Pass |
| 98  | 2662.447 | 33.117 | 4.335  | 0.000 Pass |
| 99  | 2672.547 | 47.450 | 3.391  | 0.000 Pass |
| 100 | 2667.680 | 43.817 | 3.537  | 0.000 Pass |
| 101 | 2671.980 | 39.550 | 3.908  | 0.000 Pass |
| 102 | 2668.113 | 31.683 | 3.317  | 0.000 Pass |